Warm Up

Take out your hw to be stamped

- Imagine you have been given the task of estimating the total amount of sunflowers in a population.
- Discuss what methods you might use for your estimation that does not involve counting every single sunflower.

Agenda

- Review homework
- Ch 4 Notes: Population Biology
- Unit 2 Quizlet Live
- Lab: Determining Population Size

Homework:

4.1 Section Assessment (pg. 99 #1-5)

Ch 2-4 Exam next Wed/Thurs (3/27 or 3/28)

Chapter 4: Populations

Population Distribution Per Age Range for Several Countries

How Fast do Populations Grow?

- Populations grow exponentially – graph is initially a J-shaped curve
 - Exponential growth: As a population gets larger, it also grows at a faster rate
- For any organism, growth starts slow, then increases rapidly. Why?

Can a Population of Organisms Grow Indefinitely?

- Populations have limiting factors that level off growth – S-shaped curve
- Carrying Capacity (K) –

Number of organisms an environment can support.

 If under K, birth rate exceeds death rate; if over K, death rate exceeds birth rate

D Carrying capacity The

environment can support this many organisms. If population size rises above the carrying capacity, more organisms die than are born. The population drops below the carrying capacity.

Fluctuations The number of organisms tends to rise above and fall below the carrying capacity due to limiting factors.

Carrying capacity

O

Number of organisms of one species

Leveling off As the population grows, more organisms are using the existing resources. Growth slows. Overall, the graph begins to resemble the letter *S*.

B Rapid growth There are many organisms, each reproducing, resulting in a faster increase in the number of individuals. Growth is exponential.

> **Beginning growth** The population increase begins slowly, as the few starting members have offspring.

Types of Population Growth

- Life-History Pattern vital factor in determining population growth
- Two growth patterns; rapid (mosquitoes) and slow (elephants)
- Environmental conditions determine life-history pattern (mature rapidly, reproduce early, and short life span)

Environmental Limits to Population Growth

- Density-dependent factorslimiting factors such as disease, competition, and parasites
- Increasing effect as population size increases
- Proximity determines
 intensity of limiting factor

Disease in soybean crops

Environmental Limits to Population Growth

- Density-independent factors- affect all populations regardless of their density
- Most are abiotictemperature, storms, flood, drought, habitat destruction

Flooding from Hurricane Andrew (1999); all worms drowned – not dependent on numbers

World Population

- Calculating growth rate
 - Birthrate- death rate=Population growth rate (PGR)
 - Doubling time: the time needed for a population to double
 - Age structure: proportions of population in different age levels

https://youtu.be/WGcE3ZWBjfo

Population Distribution Per Age Range for Several Countries

